4 research outputs found

    Expected Utility Maximization and Conditional Value-at-Risk Deviation-based Sharpe Ratio in Dynamic Stochastic Portfolio Optimization

    Get PDF
    In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation (CVaRDCVaRD) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the CVaRDCVaRD-based Sharpe ratio on the utility function and the associated risk aversion level

    Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem

    Full text link
    In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method

    A transformation method for solving Hamilton-Jacobi-Bellman equation for constrained dynamic stochastic optimal allocation problem

    No full text
    In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method. doi:10.1017/S144618111300031
    corecore